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Abstract
In various cultures, across history and at many different spatial scales, humans produce a rich
variety of geometric shapes. Recent work has put forward a concrete proposition for a Language of
Thought (LoT) underlying the mental representation of geometric shapes in contemporary humans.
Initial experiments, based on a comparison of baboon and human performance in an intruder task,
suggested that this ability could be unique to humans. Here, to deepen our understanding of
the evolutionary origins of geometric representations, we compared humans and baboons (Papio
Papio) in a delayed geometric match-to-sample task with a broad array of shapes. Crucially, the
presentation speed was manipulated so that, on slow-paced trials, animals were given more time to
reflect on the shapes. The shapes were sampled from our proposed LoT and spanned a range of
predicted geometric complexity under that model. Although the overall pattern of behavior was
still strikingly different in humans and baboons, when presentations were slower, we did find a small
contribution of the LoT representations in baboons, although weaker than in humans. In both
species, longer looking time increased the effect of the LoT-based predictor. While humans used the
ability to self-pace to modulate their looking time, thus benefitting from longer exposure times for
more complex shapes and rendering this geometric complexity effect visible, baboons did not.

Introduction
Contemporary humans produce drawings and fill out missing parts from partial schematics depictions,
but the same behavior has not been successfully prompted in great apes; and even stylized or
impoverished images elicit very different behavior in apes compared to humans (Close & Call, 2015;
Saito et al., 2014; Tanaka, 2007). Moreover, the human competence for symbolic, non-representative
productions is not new: there is evidence of symbolic engravings from Homo erectus dating back
~500.000 years, with many other prehistoric evidence at different periods and locations (d’Errico
et al., 2018; Henshilwood et al., 2018; Joordens et al., 2015; Texier et al., 2010). These productions
are recognizable as intentional to contemporary humans because they have a lot of internal structure,
often featuring repetitions of motifs as well as distinct geometric properties such as right angles
and parallel lines. Such geometric signs are sometimes referred to as symbolic because they do not
resemble real-world objects (although they might have been intended to refer to them). While recent
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work suggests that macaques sometimes produce graphic patterns with some geometric regularities
(Sueur, 2025), these productions appear to lack the systematic, intentional and varied features that
prehistoric and contemporary human productions systematically exhibit.

In previous work, we found that, when tested for the perception of geometric regularities in
quadrilaterals under the very same conditions, baboons and humans performed very differently,
with only humans attending to geometric regularities such as parallels, right-angles or equal sides
(Sablé-Meyer et al., 2021). We therefore suggested that some aspects of mental representation
of geometric shapes may be unique to humans and may therefore shed light on the emergence
of geometric abilities and the human cognitive singularity (Dehaene et al., 2022) – all the while
stressing that more data was needed.

The goal of the present study is to provide more evidence on the respective abilities of baboons and
humans in tasks with geometric shapes, in order to shed light on the question of the emergence of
symbolic behavior. Do humans, but not non-human primates, produce geometric engraving because
of a lack of representational ability, which would indicate that this ability is evolutionarily recent?
Or are there other factors at play, in which case we might be able to find evidence for some degree
of symbolic representation in non-human primates?

A successful formal theory of the representational abilities in contemporary humans provides a useful
benchmark against which to evaluate prehistoric findings or contemporary non-human primate
abilities. Here, we rely on a formal description of the human representation of geometric shapes
within the Language of Thought (LoT) framework (Sablé-Meyer et al., 2022) which we describe
in a first section. We used stimuli derived from this model to probe the representational abilities
of baboons (Papio Papio) and probed how they fare on a test for the mental representations of
geometric shapes under different time constraints. First, we developed a training regime designed to
ensure that the delayed-match-to-sample task was mastered independently of the stimuli. Then,
we collected choice and response time in two experiments in baboons where the encoding time was
varied (self-paced in 12 baboons; fixed and comparatively longer in 9 baboons that were part of
the first experiment). Finally, we collected data in a similar fast-paced experiment in 560 humans:
together with data from previously published work in a similar experiment with self-paced timing in
humans (Sablé-Meyer et al., 2022), these data allowed us to investigate the effects of encoding time
and population on behavior in this task.

We found that while the evidence for a LoT representation was much stronger in humans than in
baboons, geometry regularity did influence behavior in both populations, particularly at longer
encoding times. However, the baboons did not chose to self-pace their responses with longer looking
times, which might explain why there was only a very small effect of the LoT representation on
their behavior. Conversely, not only did humans self-pace their responses at longer looking times,
but they adapted their looking times to the difficulty of a given trial in direct proportion to the
predictions of the LoT model.

Language of Thought and Program Induction
We previously proposed that the mental representation of geometric shapes in humans is best
described by mental expressions or “mental programs” in a Language of Though (LoT) for geometry
(Fodor, 1975; Leeuwenberg, 1971; Sablé-Meyer et al., 2022). For example, the mental representation
of a square might look like “repeat the following 4 times: [draw a line, then turn by 90°]”. This
representation attempts to capture the high degree of compositionality and productivity of human
geometric shape representations, which include concepts such as “a square of circles”. The theory
postulates that the mental representation that people have of a shape is the shortest program in this
internal language, and that the cognitive complexity of a shape depends on the size of this minimal
program. Therefore, we predict that the Minimum Description Length (MDL) of a shape should be
a major predictor of participants’ performance in tasks involving these shapes.

This theory supposes that when humans perceive a geometric shape, they infer the “mental program”
or the sequence of mental operations that could have drawn it. Such an inference is known as the
program induction problem (Gulwani et al., 2017; Rule et al., 2020). It is a notoriously hard problem
because the number of programs of length n increases exponentially with n, making systematic
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search in the space of programs difficult for anything but trivial program lengths. In the present
work, we do not address how the program induction steps are performed, but merely assume that
participants build the appropriate representations; however, induction algorithms that can apply to
geometric shapes have been proposed (Ellis et al., 2023; Sablé-Meyer et al., 2022).

Shape Complexity and Minimal Description Length
To make things more concrete, we will briefly describe the language here; more details can be found
in Sablé-Meyer et al. (Sablé-Meyer et al., 2022). The goal when designing the language was to
capture simple shapes as attested in various cultures and (pre-)historic period with short programs.
To avoid increasing the expressivity of the language, which would make every shape have a simple
representation, we symmetrically tried to ensure that short programs generate only shapes that are
simple for humans.

Our language is conceptually similar to the Logo computer language (Abelson et al., 1974) and
to other similar proposals (Leeuwenberg, 1971) in that some instructions move a pen on paper,
either tracing or not, while other instructions organize the control flow. The language comprises
three categories of instructions. First, control primitives organize the execution of other programs.
Our language has three control primitives: Repeat, which makes it possible to repeat a program n
times (n=2 by default); Concatenate, which allows to chain two programs, and Subprogram, which
allows for temporarily executing another program by calling it from within the parent program. The
generative grammar is illustrated in Fig. 1A.

Second, the language comprises drawing primitives. The pen has an internal heading direction, and
three primitives can move it : Move, which sends the pen ahead a certain distance without tracing,
Turn, which changes the heading without moving, and Trace, which takes several parameters (the
pen’s speed, acceleration, turning speed, and a duration) and integrates over these parameters while
tracing the corresponding curve.

Finally, since some of these primitives require numbers, the language includes a minimal mechanism
for arithmetic. As a starting point, we simply included three mechanisms to build them from
number 1 : the ability to increment any number by one, the ability to change the sign of a number,
and the ability to take the fraction of two integers. In our language, ¾ is therefore represented
as frac(1+1+1, 1+1+1+1) and has a cost corresponding to the number of operations required to
construct it, here 13 (“frac”, seven “1”, and five “+”).

In our previous work (Sablé-Meyer et al., 2022), we tested the cognitive plausibility of this language
by sampling shapes of different MDL (Figure 1B) and testing the prediction that the human capacity
to memorize and recognize them should decrease monotonically as MDL increases. We used a
self-paced delayed-match-to-sample task. On each trial, participants first saw a target shape and
studied it for as long as they thought that they needed to memorize it. The shape appeared when
they pressed a key and disappeared upon release, providing us with a first measure of subjective
complexity which we called the “encoding time”. Once the shape disappeared, there was a 2s delay
with an empty screen (in the experiments reported here this delay varies between experiments), then
a choice screen with six choices shuffled in six possible fixed locations, including the target shape
and five distractors. Participants had to select the target shape, and we measured their accuracy
and choice time. We found that all three dependent measures (self-paced encoding time, choice time,
and choice accuracy) were well predicted by the shapes’ MDL, even after accounting for other visual
properties of shapes such as gray level (average pixel value, or luminance) and visual frequency.

In the present work, we extend this work to baboons to try to better understand the evolutionary
origins of the representation of geometric shapes as mental programs.

Experiment 1: Baboons, Self-Paced
We first replicated, in baboons, the exact method that we used in human adults except for a different
delay duration. Thus, we designed a training procedure to introduce the baboons to a self-paced
match-to-sample task robust to changes in size and number of distractors. We confirmed their
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Fig. 1. A. Generative grammar of our proposition for a language of thought for geometric shapes. We separate primitives
that generally structure the program (top rows) from primitives that move the pen and trace the shape (middle rows) and
primitives related to numbers (bottom rows). Adapted from (Sablé-Meyer et al., 2022) B. List and visualization of all of
the geometric shapes ranked by MDL, together with some of the regressors used in the various analyses throughout the
article: number of 4-or-more-way intersections (Ni4+), number of angles (Ni2), whether the shape is closed or not (Closure),
number of 3-way intersections (Ni3), number of extremities (Nex) and number of disconnected parts (Ndis). Two additional
continuous regressors are not shown in the table: gray level (luminance, called Greys) and spatial frequency (Spatial Freq.).
Adapted from (Sablé-Meyer et al., 2022).
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understanding of the task on a novel set of stimuli, before evaluating their performance on our
geometric stimuli.

Method
Participants

Participants were 25 Guinea baboons (Papio Papio, 18 females, age range 1.5-23 years, mean age
11 years) from the CNRS primate facility (Rousset-sur-Arc, France). Baboons lived in a 700m2

outdoor enclosure with access to indoor housing and had a permanent access to ten Automated
Learning Devices for Monkeys (ALDM, (Fagot & Bonté, 2010) equipped with a 19-inch touch screen
and a food dispenser. Note that the baboons’ environment contains a mixture of natural features
(e.g. trees, congeners) and artificial tools and buildings with rectangular shapes (e.g. prefabricated
rooms, testing booths, computer screens, etc).

A key feature of ALDM is a radio-frequency identification (RFID) reader that can identify individual
baboons through microchips implanted in their arm (Fagot & Bonté, 2010). The baboons therefore
participated in the research at will, without having to be captured, as the test programs could
recognize them automatically. The experiment was controlled using EPrime software (Version 2.0,
Psychology Software Tools, Pittsburgh). Ethical Standards: the baboon experiment received ethical
approval from the French Ministry of Education (approval APAFIS 2717-2015111708173794 v3).

Twelve baboons were able to successfully learn the delayed match to sample task all the way to the
geometric stimuli. Others were removed from this project at various stages of the learning process
because they were not engaged enough, often due to poor performance leading to low reward rate.

Procedure and Stimuli

Procedure The task structure is shown in Fig. 2A (training) and Fig. 3A (geometry trials). Each
trial started with a waiting image of a yellow cross at the bottom of the screen. When baboons
were ready to start a trial, they touched it. Upon touching it, the target stimulus for this trial
appeared centered on screen, on the bottom half of the screen. As soon as the target shape was
touched, it disappeared. Unlike in our previous experiment (Sablé-Meyer et al., 2022), as soon as the
target disappeared, we displayed the choice screen with up to six shapes. To prevent the subject’s
hand, which just touched the target stimulus, from occluding specific stimuli in the choice screen,
stimuli are presented on a semi-circle centered on the target shape in one of six possible locations
equidistant from the center, with an angle between the center of two adjacent shaped and the center
of the previously displayed target shape of 36°. In all trials, each stimulus was randomly positioned
to one of these locations.

Baboons were rewarded for clicking on the stimulus that was identical up to scaling to the target
shape displayed previously. For training purposes, trials were presented in blocks with increasingly
challenging trial types (see training procedure in Fig. 2). There were eight consecutive training blocks
with a first set of non-geometric stimuli, followed by one step with a different set of non-geometric
stimuli to test for an understanding of the task beyond our training set of stimuli (generalization),
and finally the block with geometric shape trials. When they performed 80% correct trials on a
given block, they moved on to the next step, otherwise they performed an additional block of the
same step. Each training block comprised 108 trials (see below), and each test block 68 trials, one
per shape used in our human experiment (seven shapes for each MDL ranging from 4 to 12, plus one
shape with MDL=1, one with MDL=2, and three with MDL=3). At the end of each block, behavior
was evaluated and baboons were moved to the next block (or, eventually, to another unrelated
experiment) when they reached 80% success on a given block. Some baboons were put back on this
task a few days later, in which case they were restarted at the generalization step in order to ensure
that they remembered the task well before collecting more data on the geometry stimuli.

Stimuli Training stimuli belonged to three categories, as shown in Fig. 2A: clipart of fruits,
patches of colors, and single letters in white on black background. There were 12 items in each
category, and the match-to-sample was only performed with distractors from the same category
in order to force the baboons to pay attention to the task. Out of the 12 items, 6 were used for
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the consecutive training steps, and 6 were saved for the “Generalize” step in order to confirm that
the subject understood the match-to-sample task and could generalize beyond the specific training
stimuli.

Geometric shape stimuli were generated by enumerating geometric shapes from our language by
increasing order of MDL, as previously described (Sablé-Meyer et al., 2022). Since, the number of
programs increases exponentially with their size, we could only reasonably enumerate all programs
up to length 12. Since some shapes could be generated by multiple programs of different complexity,
we selected, for each shape, the program of lowest complexity and removed copies. Finally, we used
all shapes from MDL 1, 2 and 3 as there were few of them, and we randomly sampled 7 of them
for MDLs 4 to 12. Detailed descriptions of the procedure for generating the stimuli can be found
in Sablé-Meyer et al. (Sablé-Meyer et al., 2022) together with summary statistics of some of the
features of these shapes (see Fig. 1B for a description of the shapes’ properties).

In order to make the task sufficiently difficult, the distractors in the main task were not chosen
completely randomly. Of the five distractor items on-screen during the choice period, one was
selected as being the closest to the target among all available shapes, according to a metric based on
the Euclidean distance between their internal representations in the last layer (IT) of a convolutional
neural network of object recognition, CORnet (Kubilius et al., 2018). We used this as a way to
approximate the visual processing of the ventral pathway, and therefore display a distractor that
should be visually quite confusable with the target according to this metric. Similarly, another
distractor was selected as the one with the closest overall gray level. The three other distractors
were chosen without replacement amongst the remaining shapes.

The different stimuli forming the choice display were arrayed in a semi-circle (see figure 2B), thus
ensuring that the correct choice was always at a different location and at a fixed distance from the
stimulus previously presented in the target screen. To further block low-level matching strategies,
the size of the target was twice that of the items in the choice screen—we gradually trained subjects
to ignore size in several steps, see below. Because some shapes had rotational invariance while
others did not (e.g., circle versus segment), no rotation was performed with the stimuli (unlike in
Sablé-Meyer et al., 2021).

Training Scheme

To train animals, they went through a series of training steps where the task became increasingly
similar to the test task, starting with a simple version with a high reward rate even for poor
performance in order to encourage animals to keep trying and learn the task. Each baboon was
moved onto the next stage whenever their success rate exceeded 80% on a block of 108 trials: six
repetition of each of three visual stimuli types (cliparts, colors, and letters in each of the six possible
intruder locations, 6x3x6=108). The steps, schematized in Fig. 2B, ramped up in difficulty along
two successive dimensions. First, the sample was presented with two distractors (a total of three
possible choice items, thus ensuring a minimal reward rate of 33% even for chance performance)
and we added more distractors one by one until we reached the total of 5 distractors and therefore
six items on the choice screen. Then we progressively increased the size of the target from a scaling
of 100% to a scaling of 200% in a total of four steps (125%, 150%, 175%, 200%). By the end of such
a training procedure, the subjects should have understood the task, expected the target to be twice
the size of the items to choose from, and known that they would have to look for the target within
six possible shapes to choose from.

To confirm that baboons understood the structure of the task beyond the set of items used for
training, we added an additional generalization step wherein all the stimuli were swapped with brand
new stimuli never seen before, although superficially similar to the training ones, before switching
to the target geometric shapes.

Data analysis
We report results from the 12 subjects that completed the entire training regime and the geometry
block. We collected several dependent variables: the “encoding time”, which corresponds to the
duration between the click on the yellow cross and the click on the target stimulus; the “choice
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step chance estimate conf.int statistic df p.value
1 1/3 0.73 [0.67, 0.79] 14.75 11 < .001
2 1/4 0.82 [0.77, 0.87] 25.63 11 < .001
3 1/5 0.80 [0.76, 0.84] 33.31 11 < .001
4 1/6 0.79 [0.76, 0.82] 40.40 11 < .001
5 1/6 0.76 [0.71, 0.81] 26.35 11 < .001
6 1/6 0.73 [0.70, 0.76] 41.76 11 < .001
7 1/6 0.71 [0.66, 0.75] 27.67 11 < .001
8 1/6 0.72 [0.68, 0.75] 32.58 11 < .001
9 1/6 0.61 [0.58, 0.64] 34.18 11 < .001

10 1/6 0.46 [0.42, 0.51] 15.59 11 < .001

Table 1: Average success rate on the first block of each step, and comparison to chance level. Steps
1–4 are training steps with increasing number of distractors, steps 5–8 are training steps with
increasing size of the target, step 9 is the generalization to new stimuli, and step 10 is generalization
to geometric shapes

time” which corresponds to the duration between the appearance of the choice stimuli and a click on
one of them; and finally the identity of the chosen stimulus which we turn into a correct/incorrect
independent variable. Additionally, to make comparison with humans more direct, we estimated the
LISAS score (Linear integrated speed–accuracy score). The formula is LISAS = RT j + SRT

SP E
× PEj

with RTj and PEj the choice time and proportion of error in condition j, and SRT and SPE the
overall standard deviations of choice time and proportion of error respectively (Liesefeld & Janczyk,
2019; Vandierendonck, 2017, 2021).

Each trial was characterized by the target shape and the set of distractors: each target shape was
coded as a factor which was used as independent variables in some of our analyses. Additionally,
each geometric stimulus possessed several properties: of main interest to our questions, the shape’s
MDL which we included as a numerical predictor in our analyses. Since we expected other strategies
to be operative when performing a match-to-sample (for example, one can reject distractors based
on their luminance without resorting to a rich LoT-like representation) and these other strategies
partially correlate with MDL, we also included numerical estimates of the visual properties that
support these strategies as additional regressors in some of our analysis—borrowing from previous
work (Sablé-Meyer et al., 2022). To control for low-level visual properties, we computed and used as
regressors the luminance (Grey) and spatial frequency (Spat. Freq.) of each shape. Additionally, to
take into account other visual properties of shapes which may correlate with MDL, but ultimately are
not as fine-grained as our proposition, we manually counted and included as regressors the number
of extremities (Nex), intersections where two lines meet (singularities, variable Ni2), intersections
where three lines meet (Ni3), intersections where four or more lines meet (Ni4+); we also included
topological properties such as connectedness (number of disconnected parts, or Ndis), and finally
the presence of a closed shape or not (closure) (Chen, 1982; Roelfsema & Singer, 1998; Wagemans
et al., 2012).

Results
Training and Generalization

Fig. 2C shows the average accuracy across primates for each training step, separately for their first
block and their last block. Note that chance level is not constant in these plots: since we slowly
increased the number of distractors, chance was 1/3 in the first block, then 1/4, 1/5 and finally 1/6
for the rest of the experiment. At each step, some learning was required–however, even during the
first block of each step, performance was already better than chance across subjects as shown in
table 1.

Baboons also generalized immediately to new stimuli, since their performance was better than
chance on the first block of the “generalizing” step (average success = 0.61, chance = 0.167; see
Table 1.) Since blocks contained several repetitions of the same target stimulus, we also looked at
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Fig. 2. A. Training stimuli and procedure. Pressing the yellow cross started a trial and displayed a target, which disappeared
when clicked or after a fixed delay depending on the condition. An empty screen of fixed duration (or no empty screen in
Exp. 1; see method) followed, and finally the choice screen. The 36 stimuli used for training are displayed in the inset. B.
Main training steps: first the number of distractors, and then the size of the target was slowly increased to make the task as
close as possible to the human task. This display overlaps the target screen and the choice screen to make the size difference
visible, but the two never appeared at the same time on screen, as shown in Fig. 2A. C. Average performance at each step,
with standard error across subjects, during the training procedure in experiment 1. D. Boxplot summarizing each primate’s
encoding time across the geometric shape testing blocks. E. Average performance at each step, with standard error across
subjects, during the training procedure in experiment 2 which includes more intermediary steps than experiment 1.

8



the average success rate for the first presentation of each stimulus. Again, performance was better
than chance (average success rate = 0.43, 95% CI [0.35, 0.50], t(11) = 8.02, p < .001).

Furthermore, baboons did not take significantly longer to reach the success criterion for that step than
for the previous training step: the mean number of trials for the last step before generalization was
1368, SEM=240.52, min=216, max=6480, while for the generalization step it was 1971 (SEM=574.59,
min=216, max=6480; paired t-test on the number of trials, two tailed: difference is -603.00, 95% CI
[−1, 923.40, 717.40], t(11) = −1.01, p = .336).

Geometric shapes

Baboons were significantly better than chance as early as the first geometric shape block (average
success rate of 0.46, 95% CI [0.42, 0.51], t(11) = 15.50, p < .001). Still, they performed significantly
worse on the first block with geometric shapes than on the first block of generalization (paired
t-test: difference of 0.14, 95% CI [0.09, 0.20], t(11) = 6.10, p < .001). Note that in the case of the
geometry trials, a block consisted of 68 trials with different target shapes, so there was no repetition
within a block, which makes learning at the block level harder: if we compare the performance
on a geometry block with the performance in the first presentation of each stimulus, they are not
significantly different (difference −0.04, 95% CI [−0.09, 0.02], t(11) = −1.43, p = .179). Although
they all eventually reached the 80% target accuracy, it also took baboons significantly longer to
reach that criterion in the geometry condition than it did for the generalizing step (number of trials:
mean= 3337.67, SEM=530.47, min=476, max=6528; paired t-test on the number of trials, two
tailed: -1,366.67, 95% CI [−2, 265.01, −468.32], t(11) = −3.35, p = .006).

We next turned to analyzing the baboons’ performance across shapes during the geometric shape
period. Our first observation was that encoding time was not a meaningful metric for this cohort. As
shown on Fig. 2D, the baboons used very short “encoding time,” averaging at 193ms (distribution
of the subject’s means: SEM= 18.58ms, min=126.00ms, max=319.60ms). This duration was not
modulated by the target shape: we conducted a one-way between subjects ANOVA to compare the
effect of shape on encoding time and found no significant effect [F(67, 737) = 1.07, p = .334]. These
observations suggest that the animals touched the sample as fast as possible in order to make it
disappear and move to the choice screen: indeed, since the starting cross and the target stimulus
were in the same position, it was possible to “double-click” the screen fast to move on to the choice
screen while briefly seeing the target stimulus. Contrary to humans, baboons did not modulate
their actions in order to vary the duration of the target display according to the complexity of the
item on display, making no use of the possibility to look at some shapes longer than others, or in
fact to look for long at any shape at all. Consequently, for this experiment we did not analyze this
dependent measure further–this is why we designed experiment 2 with a longer presentation period
(now imposed, not self-paced).

We then turned to choice time and choice accuracy and correlated both metrics to the target shape
MDL. To compare performance across animals with different learning speed, we only kept the
blocks where performance was above 70% correct (but below 80%, since this threshold moved them
to another task.) This means that different animals had different numbers of trial, and we first
averaged the data for each shape, and then for each MDL value, and finally across subjects before
correlating it with the MDL. For these blocks, the average choice time across shapes was 1112.40ms
(SEM=20.50, min=707.70, max= 1452.70).

In a simple linear regression analysis, we found no effect of MDL on either accuracy or response time
(see Fig.3B; choice time: F(1,10)=1.82, p=.21, R2=.15; accuracy: F(1,10)=2.00, p=.19, R2=.17).
However, since we expected other predictors such as the luminance or the number of sub-parts of a
shape to also predict behavior, we next turned to more sensitive analyses with mixed-effect general
linear models. We used each shape’s MDL and other visual features as additive fixed effects on either
accuracy or choice time, and an intercept as random effect (adding additional random effects caused
singular fits). All variables were z-scored across the entire dataset to make the fitted coefficients
comparable. The model was estimated on a total of 816 observations across 12 participants and
successfully converged using the Satterthwaite method; p-values were estimated with Type 3 tests,
with F(1, 795.00) degrees of freedom for each predictor. Estimation was performed using R version
4.5.1 and afex version 1.4 (Singmann et al., 2015). The coefficients and their statistical significance
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are shown in Fig. 3C. While the MDL predictor did not reach significance for the choice time in
this analysis, it significantly correlated with accuracy, together with two other variables: number of
2-way intersections, and number of extremities.

Unfortunately, direct comparison with human data is made complicated by the fact that (i) baboons
did not self-pace the encoding time, preventing us from modeling that dependent variable, and (ii)
the two populations made different speed-accuracy trade-offs. Comparing to previously collected
data in a human self-pace condition with the same task (Sablé-Meyer et al., 2022), the accuracy
of the human group was virtually perfect: the average success was 99%, SEM=.12%; 34.9% of the
participants made no mistake at all, yielding no variance to explain. On the other hand, their choice
time was comparatively slower, with an average choice time of 1.52±.03s in humans compared to
1.11±.05s in baboons (two-sample t-test, p<.001).

Because of such differences, and to combine the information about both choice time and accuracy
in the same meaningful manner in both populations, we unified these two dependent measures
by using an integrated measure of speed and accuracy, the LISAS score. There was one LISAS
score per participant and shape, which we submitted to the same analyses as above, see Fig. 4A,
top row. Both a simple linear model with MDL and an intercept as predictors (F(1,10)=2.51,
p=.14, R2=.20) and a mixed-effect GLM similar to the one described above but predicting the
LISAS score (coefficient associated to the MDL term estimated as .051, 95% CI [−0.03, 0.13], p=.21)
indicated that MDL was not a significant predictor of baboon behavior at the p<.05 level (see below,
experiment 3, for human data).

Experiment 2: Baboon, Slow-Paced
The results of experiment 1 showed that baboon behavior, unlike humans, was at best weakly
influenced by geometric complexity as measured by MDL: our main dependent measure, the LISAS
score, did not correlate with MDL. However, baboons did not make use of their ability to self-pace
the encoding time to modulate it as a function of the shape complexity. Since they did not look at
complex shapes longer than simple shapes, they might not have had time to encode them properly,
which would bias the behavior in favor of low-level perceptual strategies that can be computed with
a quick glance. To correct for this and provide a more meaningful comparison with humans, we
decided to replicate the experiment with longer fixed, subject-independent looking times and wait
times, set to the average of the human condition in the self-paced condition. The hope was that
this manipulation would provide baboons with enough time to encode a richer representation of
the target shape and use it in the choice period. We could then examine if, under those slower
conditions, their behavior would be more correlated with the shapes’ MDL.

Method
Participants

The cohort of participants was the same cohort of 25 baboons as the previous study. In this
experiment, 9 baboons eventually reached the geometry task: we report data from these 9 participants
in this section.

Procedure and Stimuli

Procedure The procedure was identical to experiment with one exception: during the main
task, both the display of the target item, and the waiting time before the choice screen were set to
1000ms. We adapted the training procedure as described below to slowly introduce this change to
the participants.

Stimuli The stimuli were fully identical to the one used in experiment 2.
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Training Scheme

We introduced 12 additional training steps that took place before the first training step of experiment
1. Starting with a 1-in-3 choice screen, a 100ms presentation time and no delay, we slowly built up the
display duration (200ms, 300ms, 500ms, 700ms, 1000ms) and then the delay duration (0ms, 100ms,
200ms, 300ms, 500ms, 700ms, 1000ms). Once both had reached 1000ms, we resumed the previous
training procedure at the 5th step of experiment 1 where we increase the number of distractors,
while keeping those delays fixed for the rest of the experiment.

Results
As shown in Fig. 2E, while the baboons had to relearn the first step of the training (200ms
presentation duration, 0ms delay to match), they then very quickly moved through the successive
steps where we increased target duration and delay duration (the median number of blocks required
to move to the next step was 2 for all of these steps except the first one). The animals then learned
the next steps very similarly to experiment 1.

On the crucial geometric test trials, the average performance across shapes was very comparable
to experiment 1: after filtering for blocks with over 70% correct as before, the Pearson coefficient
between the two experiments was r=.90 (in a linear model using the data from the fast condition to
predict the data from the slow condition across all shapes, F(1,66)=294.3, p<.001, R2=.82). Choice
times were also very similar (distribution of average choice time across shapes: mean=1197ms,
SEM=20.65, min= 755.60, max=1544.50; Pearson correlation across shapes between experiments:
r=.81). Fig. 4B shows the Pearson correlation coefficients across shapes of the LISAS score for
each pair of participants, including in different population and conditions, as well and the average
correlations across population and conditions.

In this experiment, both choice time and choice accuracy showed a small but significant correlation
with MDL in a simple linear regression (choice time: F(1,10)=6.54, p=.028, R2=.40; accuracy:
F(1,10)=7.13, p=.023, R2=.42). The LISAS score summarizing those two effects was also correlated
with MDL (LISAS score: F(1,10)=7.10, p=.024, R2=.42; shown in Fig. 4A, 2nd row). Finally, MDL
also predicted the LISAS score in a mixed-effect GLM with other predictors as described above,
with 612 observations in 9 subjects (coefficient associated to the MDL term estimated as .25, 95%
CI [0.15, 0.35], p<.001 in a one sample t-test against 0). However, MDL was not the sole predictor
of baboons’ LISAS score, since the number of 2- and 4- way intersections, the shape’s closure, and
the number of disjointed parts were also significant predictors.

Experiment 3: Humans, Fast-Paced
Increasing the target encoding time changed baboons’ behavior in measurable ways. In particular,
the LISAS score of baboons in the slow-paced condition was now correlated with the shapes’ MDL,
a result previously found only in humans (Sablé-Meyer et al., 2022). This finding led us to wonder
whether, conversely, with very short encoding times, humans would lose their correlation with
MDL and revert to a baboon-like behavior. To answer this question, we collected data in human
participants while the display and delay durations were fixed to short duration instead of self-paced
(experiment 1). Together with our prior human data in the self-paced condition (Sablé-Meyer et al.,
2022), this experiment provided us with a full 2x2 design matrix crossing pace (fast or slow) with
species (humans versus baboons) – with the only difference that the slow-paced condition in humans
was self-paced, with a delay that varied across shapes, while it was the fast condition that was
self-paced in baboons.

Method
Participants

We recruited 560 participants online for this experiment. Demographics were self-reported and a few
aberrant values were given but we did not remove participants on the basis of that information. The
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average age was 37.7 years old (SD=19.1; 1st quartile 28, 3rd quartile 45). The sample comprised
130 females, 408 males, and 22 who did not identify as either.

Following exactly our criteria for filtering participants from previous work (Sablé-Meyer et al., 2022),
we removed participants that were on average three standard deviation above the average for the
choice time across participants. Similarly, for each shape, we removed the responses that were three
standard deviation above the average for that shape. We did not filter on accuracy. We computed
these statistics separately and on the entire dataset: some datapoints were marked as outliers for
both criteria. Overall, four participants were removed from the analysis, and 1.85% of the data
points were removed.

Procedure, stimuli and training scheme To test the behavior of humans under time pressure
when performing this task, this new group of participants was tested with a fixed display duration
of 100ms. We also removed the waiting duration entirely to mimic the overall structure of our
experiment 1. Additionally, we reused the semicircle display used in the baboons instead of the 3x2
grid used in the original study. Participants received explicit instructions to find the shape matching
the target (see supplementary text), and took the same training steps as the baboons, in the same
order but substantially accelerated to avoid wasting participants’ time on a task that they easily
understood. Thus, any success at a given training step moved them to the next step; otherwise that
step (with new stimuli) was repeated. The trials started with a yellow empty circle encompassing
where the target would appear, instead of a yellow cross. The stimuli were identical to those used in
experiment 2.

To compare individual baboons, who went through many repetitions per individual and condition,
with humans who only received a single trial per condition, we created pseudo-participants by
pooling participants together and match the number of non-human primate subjects. We aggregated
the data of our human participants into twelve groups based on a random ID (random strings
of 10 alphanumeric characters) assigned to each participant when they took the experiment. We
sorted the participants’ ID by lexicographic order and assigned them to groups 1 to 12 based on
the ID rank in an interleaved fashion (1st ID goes to group 1, 2nd to 2, etc., 12th to group 12,
13th to group 1, 14th to group 2, etc. until the last participant). The procedure avoids any order
effect, and because the IDs are generated at experimentation time, it is deterministic when running
the analysis. This ensured a systematic but randomized way to pool participants and created as
many pseudo-participants as we have subjects in experiment 1. Note that using all participants
separately does not change substantially the results: see Fig. S1 for a comparison of the estimates
before and after this procedure. This also allowed us to estimate a fine-grained LISAS score in
humans – otherwise, since each participant performed a single trial per shape, the second term of
the LISAS estimate would either be multiplied by 0 or 1 as we could not reliably estimate the error
rate to a single geometric stimulus. Then, when we performed direct comparisons between each
individual baboon and other baboons or humans, instead of reporting the results of individual human
participants, we compared baboons to each group, treating it (and its average, etc.) as an individual
participant. In these analyses, we lose the ability to model inter-individual differences between
humans, but this makes direct comparison between the different conditions more straightforward. We
applied the same procedure to the data from our previously published human slow-paced condition
(Sablé-Meyer et al., 2022).

Results
Following the baboon training procedure, humans went through 9 successive training steps. Having
read explicit instructions, human participants performed extremely well even during this training
period. The average number of trials required per training step was 1.4 (SEM=.016 across partici-
pants), significantly better than chance (esp. for step 4 onward where chance is one item in six).
This suggests that despite the accelerated training procedure, participants did not have trouble
performing the fast-paced match-to-sample task. Indeed, overall accuracy for the test period was
96.3% (SEM=0.27%; 22.8% made no mistake at all, and 481 out of 556 participants made fewer
than 5 mistakes during the testing period; nevertheless, the performance is slightly below those of
the human self-pace condition: since normality cannot be assumed with so many participant with
perfect performance, we performed a Wilcoxon rank sum test: W=42986, p<.001)
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Next, we investigated the behavior with geometric shapes. Again, we aggregated error rates and
choice times with the LISAS score, and correlated it with MDL. MDL significantly predicted LISAS
scores in a simple linear regression (F(1,10)=21.76, p<.001, R2=.69; Fig. 4A). We also found that
the MDL also predicted the LISAS score in a mixed-effect GLM with other predictors like the one
described above, with 816 observations in 12 pseudo-subjects (coefficient associated to the MDL
term estimated as .28, 95% CI [0.21, 0.35], p<.001). In this regression, MDL was the second-best
predictor, after gray levels (i.e. luminance; see figure 4A, 3rd panel).

Overall Results
To measure the impact of presentation pace on behavior, we estimated the similarity between the
betas in our mixed effect GLM across our four conditions. For each condition, we estimated the
mixed-effect GLM model described above and extracted the coefficient associated to each of our
9 predictors. Then, we modeled the distribution of coefficients in the conditions using a simple
linear regression. In humans, the correlation between the fast- and slow-paced conditions was
strong and highly significant (F(1,7)=39.48, p<.001, R2=.84). The same was not true of baboons,
however (F(1,7)=2.97, p=.13, R2=.30). This suggests that the difference in looking time does not
substantially change the strategy that humans use, but makes a different in the strategies that
baboon use.

Figure 4B shows the correlation matrix between the LISAS of each individual baboon and human
group, across the 68 shapes, separately for the two conditions (fast and slow pace). The behavior of
any two baboons in those two conditions was more correlated with one another than with humans
in either condition. Likewise, the behavior of any two humans in those two conditions was more
correlated with one another than with the baboons in either condition. Thus, in our geometry
task, baboons differed from humans, regardless of task conditions (Figure 4B). Nevertheless, forcing
humans to encode the shape in 100 ms made their behavior slightly more correlated with the
baboons’ in either condition than when humans took the self-paced condition.

To measure the extent to which humans are more correlated with baboons in the fast condition than
in the slow condition, we performed a non-parametric test: since different cells in the correlation
matrix are not independent, we performed a bootstrap analysis by shuffling the scores of each shape
for each (pseudo)-subject before estimating the empirical null distribution of the average difference
in correlation between humans in one condition and baboons in both conditions. We sampled 1,000
such shuffled correlation matrices and found that the true difference was greater than every single
shuffle, putting an upper bound on the p-value and indicating that the average correlation between
data from the fast-paced human group and data from baboons across conditions is significantly
higher than the correlation with data from the self-paced human group (p < .001).

To test more specific predictions, we report in Fig. 4C a regression of MDL with the residuals of a
GLM including all the other predictors. To estimate this, we first ran, separately for each (pseudo-
)participant, a GLM with all the z-scored predictors from our mixed-effect GLMs except for MDL.
We then extracted the residuals from that fitted model and, separately for each (pseudo-)participant,
performed a simple linear regression with the z-scored MDL as only predictor. We extracted the
estimated coefficient for each (pseudo)-participant, which we then analyzed.

A joint analysis of all the available data also revealed interesting patterns across and within
populations. To make data across populations comparable, we systematically relied on the LISAS
scale. Figure 4A shows the results of simple linear regressions and the full GLM. In both populations,
the fast-paced condition elicited a significantly weaker MDL effect on behavior, suggesting that
the mental operations required for estimating a shape’s mental program require some time—an
unsurprising fact in humans given our previous findings on encoding time and the MDL of geometric
shapes.

First, by comparing those values against the null hypothesis, we again found a significant effect
of the shape’s MDL in both human conditions, but also, crucially, in the slow-paced baboon data
(see Table 2). We also performed pair-wise comparisons between populations (two-sample t-test,
statistics reported on Fig. 4C). We found a significant difference between the fast-paced baboon
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Population estimate CI (lower bound) statistic df p.value
Baboons, Exp. 1 0.03 -0.01 1.43 11 .090
Baboons, Exp. 2 0.14 0.10 6.62 8 < .001
Humans, Exp. 3 0.19 0.17 15.96 11 < .001
Humans, previous work 0.25 0.22 18.14 11 < .001

Table 2: Average, confidence intervals and statistics associated to the distribution of coefficient
estimated in (pseudo)-subject level analysis of behavior in a regression of the shapes’ MDL against
the residuals of the LISAS score on our set of confounding predictors. The datapoints are visible in
Fig. 4C.

and the fast-paced humans condition and a significant difference between the slow-paced baboon
condition and the self-paced human condition: in both cases, the magnitude of the MDL predictor
was significantly higher in humans. However, while there was a trend for the slow-paced baboon
condition to exhibit smaller MDL correlation weights than in the fast-paced human condition, it
was not significant at the p<.05 level, and appeared driven by a single individual.

To separate the effect of population and encoding duration on the effect of MDL, we conducted
a two-way ANOVA with species (humans or baboons) and pace (slow or fast) as between-subject
predictors of the coefficients of the MDL predictor in the regression against the residuals from other
regressors. We found a large main effect of species (F1,41 = 60.8, η2

G = .60, p<.001) and a significant
main effect of encoding duration (F1,41 = 23.1, η2

G = .36, p<.001), but no significant interaction
(F1,41 = 2.8, η2

G = .063, p=.10). This result did not depend on our choice of accuracy cutoff in
baboons (nor did most results; see Fig. S1). Keeping all the baboon data yielded very similar results,
as we again found a very significant main effect of species (F1,41 = 76, 4, η2

G = .65, p<.001) and a
significant main effect of encoding duration (F1,41 = 35.25, η2

G = .46, p<.001), but no significant
interaction (F1,41 = 3.2, η2

G = .071, p=.08). Very similar results came out of a mixed effect model of
the LISAS score across all (pseudo-)participants with both population and condition as categorical
predictors, together with their interaction with one another and with the continuous predictors
used throughout. This time, there was a significant main effect of population, but not of condition
or the interaction of the two. There was also a main effect of all of our predictors except spatial
frequency. The effect of MDL on baboons was lower than its effect in humans, and the effect of
MDL was higher in the slow conditions than in the fast conditions, but there was no interaction of
these effects—see Table S1 for details of the model and its fit.

Overall, those results indicate that baboons were less correlated with MDL than humans, and that
in both cases, a slower pace of shape presentation boosted the correlation with MDL, yet without
any interaction between these two factors. Note that the explained variance (the generalized eta
squared, η2

G, an estimation of the proportion of variance explained by a factor in ANOVAs (Olejnik
& Algina, 2003)) was much higher for the species factor than for the encoding duration factor.

Discussion
Across experiments, we have found that a model of human geometric-shape representation also
accounts for non-null variance in baboons’ behavior on a comparable task with geometric shapes.
Indeed, when baboons perform a delayed match to sample task, with presentation duration set to
one second and geometric shapes sampled from a generative language for geometric shapes, their
pattern of performance on a given shape was slightly but significantly predicted by the length of
the shortest program that generated that shape (its MDL). We have also found that this effect of
the length of the shortest program was strongly modulated by the viewing time of the target shape
before matching: when participants looked longer at the target shape, their behavior correlated
more strongly with the MDL predictor.

We also found several interesting differences between species. First, the effect of the MDL was
significantly weaker in baboons overall, to the point of being non-significant in the self-paced
condition. Second, the two populations self-paced in opposite directions: whereas baboons self-paced
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equally fast with all shapes (and overall responded very fast), humans look longer at shapes with
higher MDL. This is why, to make the two populations more comparable, we slowed down the
presentation pace in baboons while we sped it up in humans.

Task Demands, Inhibition and Meta-Cognition
When given the opportunity to study the shapes for as long as they wished, human participants
chose to self-pace the task and slow down to observe geometrically complex shapes for a longer
time. This is a rational strategy to facilitate memory, and indeed, we found that even though the
fast-paced human group of experiment 3 already achieved extremely high success rates, participants
in the self-paced condition performed even better. It is of course unsurprising that longer looking
time yields better performance, but it is interesting and relevant that in the self-paced condition,
longer looking times were specifically allocated to the more complex shapes. This indicates that
human adults possess an introspection of shape complexity, as previously report for quadrilaterals
(Sablé-Meyer et al., 2021), and a metacognitive ability to adapt behavior to task difficulty in real
time.

Baboons, by contrast, failed to use the self-paced condition in order to extend the time available to
study the most complex shapes. This finding suggests that the two populations made different trade-
offs when approaching this task. This species difference could arise from several, non-necessarily
incompatible sources. First, baboons may be deficient in meta-cognitive abilities or inhibitory
control and respond primarily on an impulsive basis. However, there is evidence that baboons score
well on metacognitive monitoring and task control (Loyant et al., 2025; Malassis et al., 2015). A
second possibility is that baboons’ cognitive control systems do not have introspective access to the
complexity of the shapes. Thus, shape complexity impacts their behavior, but not in a way that
they can anticipate or use for inhibitory control—unlike humans, whose explicit reports of shape
complexity correlates strongly with their performance (Sablé-Meyer et al., 2022).

A third, related hypothesis comes from the neuroimaging of geometric shape perception in humans.
By recording MEG signals while human adults viewed quadrilaterals, we found two consecutive
stages in the visual processing of shapes (Sablé-Meyer et al., 2025): an early stage, peaking around
90ms, is well captured by convolutional neural models of image processing, while a later stage,
peaking around 230ms, relates to a geometric representation of shapes. Given the impulsiveness and
fast response time of the baboon population, it is possible that in the fast condition, the animals
took their decisions before the geometric representation could emerge and influence behavior. This
account is also compatible with the observed difference between the fast and the slow condition in
baboons.

Impact of the Choice of language
While we found only a weak effect of MDL in baboons, it is important to keep in mind that our
MDL measure is based on the choice of a particular language-of-thought for geometric shapes. This
is a strength of our original model: once the language is fixed, the model becomes parameter-free,
which makes it easier to validate or invalidate in humans. On the other hand, the choice of the
primitives was partially arbitrary, based on its capacity to capture the most basic shapes that
humans preferentially produce across cultures. It could be that our set of primitives is not well
adapted to non-human primates, even if they also possess LoT-like representations.

Indeed, work in other domains investigating LoT models of human cognition found that, even
within humans, the set of primitives that captured the data varied slightly with age and education
(Amalric et al., 2017). Even in a fixed adult population, previous work has established the need for
incorporating some flexibility in LoT proposals to either select among multiple proposals (Piantadosi
et al., 2016)–and in development data across learning, to incorporate the learning of new primitives
with experience (Piantadosi et al., 2012; Rule et al., 2020). With no obvious primate productions to
bootstrap the search for a language, starting from a human-based proposition is a valid starting
point, but further research could look for a better LoT for non-human primates. This would require
exploring not only the space of programs within a given language, but also the space of languages,
and repeating the present experiment with many more shapes sampled from several competing
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languages.

Local versus Global effects in perception
In complex displays, such as a square made up of small circles, humans tend to notice global changes
(e.g. when the large square is changed into a triangle) faster than local changes (e.g. when the circles
are changed into crosses). Interestingly, the reverse is true in baboons (Deruelle & Fagot, 1998;
Fagot & Deruelle, 1997). Although the roots of this finding are still being investigated (Santacà,
2024), it suggests that complex displays and shapes are encoded differently in both species. This is
compatible with the hypothesis that recursive nesting might be particularly costly, if at all available,
in baboons (Dehaene et al., 2015, 2022; Hauser et al., 2002).

Specific primitives in our language affect the global properties of a shape more often than the local
properties of a shape. For example, the repeat and embed primitives can be combined to generate
the outline of a big shape from many small shapes (e.g. “a line of squares”). Conversely, the draw
primitive is the one that generates lines and curves, and if embedded in repeat or embed primitives
it will impact local properties more strongly. Since baboons are more sensitive to local features than
humans, an interesting hypothesis would be that they have access to a similar representation format
but with a different emphasis on which primitives are easily available, and which are not—and
therefore we should adjust not the language but the relative weight of the primitives as a function
of population and condition. Most crucially, the small correlation with our current MDL that
we observed here therefore does not imply that non-human primates possess the same geometric
compositionality as humans do.

Comparison with other shape skeleton theories
How does our proposal of a model of geometric shape perception compare with others? Here, we
briefly describe how our theory the overlap and complementarity with another theory of shape
perception, the shape skeleton.

The idea that we identify shapes, based on their internal structure, by finding their skeleton, principal
axis or medial axes, is influential in the neuropsychology of vision (Ayzenberg & Lourenco, 2019;
Blum, 1973; Lowet et al., 2018). While the skeletal model has mostly been applied to the contour of
real-life animal or objects, people’s perception of even simple geometric shapes seems to be attuned
to their skeleton, in the absence of a task (Firestone & Scholl, 2014). Models to estimate the skeleton
of shapes share some properties with our approach: they are using minimal description length as a
model selection criterion to trade the prior of a given skeleton with its likelihood to be a good fit
for a shape (Feldman & Singh, 2006), and they can construct complex objects from simpler parts
(Froyen et al., 2015).

Still, our geometric shapes are very unlike the kind of shapes for which skeletal perception has been
postulated—often object or animal contours. Our proposal is very limited in scope to geometric
shapes, but the shapes that we model are not straightforwardly described by approaches based on
skeletons. In fact, the two approaches can be complementary, as objects that are well modelled
by skeletal theories are very poorly explained by our theory (e.g. the contour of a person), while
the shapes that we are generating are poorly captured by skeletons. Most interestingly, once the
skeleton of a shape is extracted (e.g. a snake), the LoT theory that we developed could explain how
humans compress it further, thus ending up depicting it with simple geometric shapes such as a
zigzag or a spiral – drawings abilities which are not observed in other non-human primates (Close &
Call, 2015; Saito et al., 2014; Sueur, 2025; Tanaka, 2007).

Comparison with existing results
The current finding contrasts partially with the results that were previously obtained when comparing
the perception of quadrilaterals in humans and baboons (Sablé-Meyer et al., 2021). What is common
to both studies is that baboons exhibit much greater difficulties than humans in processing geometric
shapes–and the present data indicate that this large difference between species is robust to changes
in task conditions, even when humans are asked to process the stimuli faster than baboons. However,
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while baboon quadrilateral perception was entirely explained by a convolutional network model
of visual processing, without any need for a symbolic or geometry-based language-of-thought, the
present study identified a condition in which, when baboons are forced to consider the shapes for
longer time before responding, their behavior is slightly but significantly predicted by MDL.

We see two possible interpretations of this finding. First, it is possible that the hypothesis of a
human singularity for geometry is too strong, and that baboons also possess a language-of-thought
for geometry, at least in rudimentary form. Alternatively, it is possible that some perceptual variable,
correlated with MDL, affected baboon behavior and made it superficially like human behavior.
While our previous quadrilateral study focused on specific properties (parallelism, right angles, equal
sides, equal angles), which our study showed are not attended by baboons, the present work used a
much greater diversity of shapes whose properties are therefore harder to control. We controlled
for many perceptual properties of our geometric shapes (see Figure 1B), but we might have missed
some. This possibility is made more likely by the fact that, as shown in figure 4A, baboon and
human behaviors were captured by very different predictors, even when the MDL regressor appeared
in both.

Conclusion
In this work, we present some evidence for the possibility that a rudimentary Language-of-Thought
representation of geometric shapes may be present in baboons. The effect is weaker than in humans
on comparable tasks, and in both species, it is modulated by encoding duration. Notably, baboons
do not self-pace in a way that makes their behavior better predicted by LoT models; instead, they
tend to respond as quickly as possible unless explicitly delayed. These findings suggest that the cost
of accessing or deploying a LoT strategy may be higher for baboons than for humans, that baboons
have reduced inhibitory control, or that their LoT differs from the one we proposed for humans.

Taken together, the results indicate that some of the mental representations we had previously
postulated in humans may be partially present in non-human primates as well. This, in turn,
leaves open the question of why humans naturally produce geometric pictorial productions whereas
baboons do not. Beyond providing a rich dataset for benchmarking theories of symbolic perception
across species, our work replicated the finding that human behaviour, much more than baboon
behaviour, is governed by Minimum Description Length (MDL) even under severe time constraints.
By identifying the rudiments of this effect in baboons, the present research may bring us a step
closer to understanding the evolutionary trajectory of symbolic behaviour in humans.
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Supplementary Materials
Task instruction
Supplementary text: task instruction for humans, experiment 3

English:

In this experiment, you have to memorize a shape and then identify it within others. You have to:

1. click inside the yellow circle to start a trial. As soon as you click, a shape briefly flashes on
the screen, and you have to memorize it. Pay close attention!

2. Then several shapes appear, and you have to click on the shape you just memorized.
Warning: you cannot change your answer once you've clicked!

Some trials are easy, others are hard, this is intended. Thanks for you time, and stay focused to
help us!

French:

Dans cette expérience, vous devez mémoriser une forme puis l'identifier parmi d'autres. Pour cela :

1. cliquez dans le cercle jaune pour commencer un essai. Une forme s'affiche alors très brièvement :
vous devez y faire attention, concentrez vous !

2. parmi les formes qui s'affichent ensuite, cliquez sur la forme que vous venez de voir.
Attention : vous ne pouvez pas changer votre réponse une fois que vous avez cliqué !

Certains essais sont faciles, certains plus difficiles, c'est normal. Merci pour votre participation, et
restez concentrés pour nous aider !

Supplementary analysis: Mixed Effect GLM
To make best use of the entire dataset, we pulled it in a single mixed-effect regression where our
continuous regressors can interact with the population and duration condition. The model structure
is as follows:

LISAS ∼(pop × condition)
× (Greys + MDL + Ni4 + +Ni2 + Closure + Ni3 + Nex + SpatialFreq + Ndis)
+ (1 | ID)

There was a total of 3060 observations across 36 (pseudo)-individuals: note that while there was no
overlap in participants across the human experiments, the identity of the subjects in experiment 1
and 2 was shared (experiment 2 saw a subset of subjects from experiment one, yielding 12 distinct
participants for the baboon experiment, and 12 per human experiment for a total of 36 different
values for the ID variable). The standard deviation for the remaining parameters was as follows: for
ID, sd(Intercept)=112.; overall, sd(Observation)=340.

Below we report the fit of the model as well as the associated statistics.
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Table 3: Fitted value and associated statistics for a mixed effect model of the LISAS score including
population and condition as co-variates. Linear mixed model fit by REML using the same R and
afex version as for the other models. t-tests use Satterthwaite’s method.

term estimate std.error statistic df p.value p.value.stars

(Intercept) 1499.35 20.75 72.26 32.09 p<.001 ***

pop=baboons -68.32 20.75 -3.29 32.09 p=.002 **
cond=fast -17.00 13.07 -1.30 45.29 p=.2

Greys 86.44 12.70 6.81 2986.96 p<.001 ***
MDL 100.45 8.84 11.37 2986.96 p<.001 ***
Ni4+ 50.67 11.43 4.43 2986.96 p<.001 ***
Ni2 -99.58 9.93 -10.03 2986.96 p<.001 ***
Closure -36.66 10.16 -3.61 2986.96 p<.001 ***
Ni3 26.44 7.74 3.42 2986.96 p<.001 ***
Nex 39.01 10.73 3.64 2986.96 p<.001 ***
spatial_freq -16.80 12.07 -1.39 2986.96 p=.164
Ndis -44.84 8.84 -5.07 2986.96 p<.001 ***

pop=baboons:cond=fast 0.30 13.07 0.02 45.29 p=.982
pop=baboons:Greys -62.70 12.70 -4.94 2986.96 p<.001 ***
pop=baboons:MDL -38.45 8.84 -4.35 2986.96 p<.001 ***
pop=baboons:Ni4+ -18.56 11.43 -1.62 2986.96 p=.104
pop=baboons:Ni2 -7.59 9.93 -0.76 2986.96 p=.445
pop=baboons:Closure 15.53 10.16 1.53 2986.96 p=.127
pop=baboons:Ni3 -20.62 7.74 -2.66 2986.96 p=.008 **
pop=baboons:Nex 14.76 10.73 1.38 2986.96 p=.169
pop=baboons:spatial_freq 26.96 12.07 2.23 2986.96 p=.026 *
pop=baboons:Ndis -44.98 8.84 -5.09 2986.96 p<.001 ***

cond=fast:Greys -31.80 12.70 -2.50 2986.96 p=.012 *
cond=fast:MDL -51.04 8.84 -5.77 2986.96 p<.001 ***
cond=fast:Ni4+ -12.87 11.43 -1.13 2986.96 p=.26
cond=fast:Ni2 37.68 9.93 3.79 2986.96 p<.001 ***
cond=fast:Closure 30.93 10.16 3.04 2986.96 p=.002 **
cond=fast:Ni3 -5.35 7.74 -0.69 2986.96 p=.49
cond=fast:Nex 23.11 10.73 2.15 2986.96 p=.031 *
cond=fast:spatial_freq 56.94 12.07 4.72 2986.96 p<.001 ***
cond=fast:Ndis 17.03 8.84 1.93 2986.96 p=.054

pop=baboons:cond=fast:Greys 25.72 12.70 2.03 2986.96 p=.043 *
pop=baboons:cond=fast:MDL 12.06 8.84 1.36 2986.96 p=.173
pop=baboons:cond=fast:Ni4+ -11.06 11.43 -0.97 2986.96 p=.333
pop=baboons:cond=fast:Ni2 -0.52 9.93 -0.05 2986.96 p=.958
pop=baboons:cond=fast:Closure 8.63 10.16 0.85 2986.96 p=.396
pop=baboons:cond=fast:Ni3 -0.62 7.74 -0.08 2986.96 p=.936
pop=baboons:cond=fast:Nex 15.48 10.73 1.44 2986.96 p=.149
pop=baboons:cond=fast:spatial_freq 2.17 12.07 0.18 2986.96 p=.857
pop=baboons:cond=fast:Ndis 2.68 8.84 0.30 2986.96 p=.762
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Fig. S1 A. Comparison between predicting the choice time of participants with our predictors after creating pseudo-
population of 12 pseudo-participants (top row) or each participant separately (top row), in experiment 3 (left) and data
from Sablé-Meyer et al. (Sablé-Meyer et al., 2022). The estimates are overall smaller on the bottom row, but so is the
standard error of the mean around them: this is expected from the fact that while the pseudo-population procedure effectively
de-noises the data, making the fraction of its variance that a model can explain higher, it reduces the number of participants
over which to estimate parameters. And indeed, the bottom model is more sensitive: while the estimates are very similar
across models, the strength of the statistical tests against zero are stronger in the model with all participants. B., C., and
D. follow the exact structure of Fig. 4, but use all of the baboon data on the geometry task instead of first filtering on
success rate to model a homogeneous population.
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