

1 Running Head: ANALOGY BY ABSTRACTION

2 *Flemming, T., Thompson, R.K., & Fagot, J. (2013). Baboons, like humans, solve an*
3 *analogical matching task by categorical abstraction of relations. Animal Cognition, 16, 519-*
4 *524*

5

6

7

8 Baboons, like humans, solve analogy by categorical abstraction of relations

9

10

11 Timothy M. Flemming

12 CNRS, Aix – Marseille University, Pôle 3C, Laboratory of Cognitive Psychology

13

14 Roger K. R. Thompson

15 Franklin & Marshall College, Department of Psychology

16

17 Joël Fagot

18 CNRS, Aix – Marseille University, Pôle 3C, Laboratory of Cognitive Psychology

19

20

21

22 *Address correspondence to:*

23 Timothy Flemming
24 timothy.flemming@gmail.com

25 404.323.3813

26

27 CNRS, Aix – Marseille University, Pôle 3C

28 Laboratory of Cognitive Psychology

29 3 Place Victor Hugo, Bât. 9, Case D

30 13331 Marseille cedex 1, FRANCE

31 **Abstract**

32 Reasoning by analogy is one of the most complex and highly adaptive cognitive
33 processes in abstract thinking. For humans, analogical reasoning entails the judgment and
34 conceptual mapping of relations-between-relations, and is facilitated by language (Gentner 1983;
35 Premack 1986). Recent evidence, however, shows that monkeys like ‘language-trained’ apes
36 exhibit similar capacity to match relations-between-relations (Fagot & Thompson 2011;
37 Flemming, Thompson, Beran & Washburn 2011). Whether this behavior is driven by the
38 abstraction of categorical relations, or alternatively by direct perception of variability (entropy) is
39 crucial to the debate as to whether nonhuman animals are capable of analogical reasoning. In the
40 current study, we presented baboons (*Papio papio*) and humans (*Homo sapiens*) with a
41 computerized *same-different* relational matching task that in principle could be solved by either
42 strategy. Both baboons and humans produced statistically identical patterns of responding. Both
43 species responded *different* when the perceptual variability of a stimulus array fell exactly
44 between or even closer to that of a *same* display. Overall, these results demonstrate that
45 categorical abstraction trumps perceptual properties and, like humans, old-world monkeys can
46 solve the analogical matching task by judging the categorical abstract equivalence of
47 *same/different* relations between relations.

48

49 Keywords: Analogy, Analogical reasoning, RMTS, Monkey, Same/Different, Abstract Thinking,

50 Representation

51

52

53

54 Baboons, like humans, solve analogy by categorical abstraction of relations

55 As a measure of abstract thinking, reasoning by analogy proves to be one of the most
56 complex cognitive processes. To solve an analogical problem, one must determine the relational
57 concept instantiated between or among one set (stimuli, words, problem-space, etc.) and
58 subsequently search for that same structural or functional relation among sets of novel and
59 unfamiliar exemplars. As a foundation for critical thinking (Gentner 1999), success in analogical
60 reasoning entails judging and mapping conceptually abstract relations-between-relations rather
61 than mere surface perceptual features (Hofstadter 2001; Gentner 1983). In humans this ability
62 occurs at an early age and, importantly, is facilitated by the emerging capacity to represent
63 abstract relations in concrete symbolic terms via linguistic labeling, as is the case also for
64 language-trained or symbol-using chimpanzees (e.g., Premack 1986; Rattnermann & Gentner
65 1998; Thompson, Oden & Boysen 1997; see also Clark & Thornton 1997; Flemming, Beran,
66 Thompson, Kleider & Washburn 2008). Crucial to analogical reasoning, whether by human or
67 nonhuman, thus are [1] examination of underlying structural similarities rather than perceptual
68 features and [2] re-encoding or reinterpretation of the abstract relations employed.

69 Recent theoretical perspectives on analogical reasoning assert that it is not only a
70 hallmark of higher-order reasoning, but also a uniquely human cognitive trait (Penn, Holyoak &
71 Povinelli 2008). In this view, the symbolic reinterpretation of analogical relations by other
72 species, including all nonhuman primates, is impossible due to their lack of a generalized
73 abstract representational capacity (c.f., Thompson & Oden 2000) and therefore their abstract

74 conceptual abilities are grounded solely on directly perceptible surface features. Hence,
75 relational-matching behavior by nonhuman animals would reflect their expert sensitivity to
76 perceptual characteristics, rather than analogical relations *per se*.

77 Supporting this claim is evidence from relational-matching tasks that the discrimination
78 of *same* from *different* in multiple-icon arrays by both pigeons and monkeys is profoundly
79 affected by the magnitude of perceptual variability (i.e., entropy) in a visual array (Young &
80 Wasserman 1997; for review see Wasserman & Young 2010; Zentall, Wasserman, Lazareva,
81 Thompson & Rattermann 2008). If relational matching performance is based on
82 entropy/perceptual variability alone, then judgments of the concepts *same* and *different* would
83 thus be derived from a perceptually grounded *continuous* scale (from *mostly sameness* to *mostly*
84 *difference*) rather than *categorically* (*same* or *different*) as presumably they are by humans
85 (Smith, Redford, Hass, Coutinho & Couchman 2008). Hence, if animals match relations solely in
86 terms of similar or dissimilar levels of perceptual variability, they cannot be said to be
87 representing abstract concepts categorically.

88 Recent evidence for reliable success by old-world monkeys in generalized 2x2 item
89 relational matching-to-sample (RMTS) tasks (e.g., match AA with BB, not CD and match EF
90 with CD, but not BB) by monkeys (e.g., Fagot & Thompson 2011; Flemming et al. 2011),
91 suggests that non-symbol/language-trained primates are indeed capable of rudimentary
92 analogical reasoning. However, as yet there is no unequivocal evidence of commonalities or
93 differences between the cognitive processes underlying the RMTS performances of these old-
94 world monkeys and humans.

95 Do non-linguistic monkeys accomplish the RMTS task by categorically representing, or
96 ‘reinterpreting’ relations as is the case for humans or alternatively, is their performance mediated

97 via rudimentary perceptual judgments? The present study aimed to settle the above debate. In our
98 study, we presented 8 baboons (*Papio papio*) and 8 humans (*Homo sapiens*) with a computerized
99 relational matching task involving different combinations of 4-item geometrical shapes (e.g., of
100 the type AAAA, ABBA, ABCD) as stimuli, with no item sharing between sample and
101 comparison stimuli (see Figure 1). In principle, this task could be solved either by considering
102 the abstract (same/different) relation instantiated by these stimuli, or by matching the stimuli on
103 the basis of their perceptual entropy. Our results provide unique evidence for the categorical
104 representation of abstract relations on a RMTS task by both human and nonhuman primates,
105 implicating continuity of underlying cognitive processes for analogical reasoning.

106 Method

107 Participants and Apparatus

108 Eight Guinea baboons (*Papio papio*) age 3 to 7 years participated on computerized tasks.
109 Eight human (*Homo sapiens*) participants (6 female) age 23 to 34 years were also recruited from
110 the CNRS field site in Rousset, France. All participants were naïve to testing hypotheses and
111 were not familiar with any related topics being investigated.

112 Baboon participants belong to a large social group of 29 animals living in 670 m²
113 enclosure at the CNRS primatology station (Rousset-sur-ARC, France). All baboons had a radio
114 frequency identification (RFID) microchip implanted in each forearm that served for auto-
115 identification within the test boxes. The baboons were tested with a new test apparatus named
116 "Automatic Learning Device for Monkeys" [ALDM, see their detailed description in Fagot and
117 Paleressompoule (2009) and Fagot & Bonté (2010)]. Each of the 10 identical ALDM test
118 systems used in the research consisted of an experimental chamber (0.7 x 0.7 x 0.8 m) freely
119 accessible from the living enclosure. Upon entering the test chamber, a baboon faces an opaque

120 panel within which a (7 x 7 cm) viewing port and two (8 x 5 cm) hand ports are positioned to see
121 and touch a 19-inch LCD touch-screen monitor (model ET1739L from EloTouch; Berwyn, IL) at
122 eye level 25 cm behind the view port. Each ADLM system had a network-controlled PC
123 computer (Dell precision 67, 3.2-GHz) and comprised a ‘homemade’ dispenser delivering dry-
124 wheat reinforcers (www.ebly.co.uk) inside the test chamber. The test program, written in E-
125 prime (V2 professional, Psychology Software Tools, Pittsburgh), automatically identified an
126 animal via the microchip when it placed its forearm within an arm port, and determined its last
127 stopping point in trial presentations, in order to assign the independent variables to be
128 experienced during the trial. The stimulus choices were recorded in each trial. With this system,
129 the participants could experience identical test programs at their own pace, independently of the
130 test system they chose. Participants from all groups were neither food nor water deprived.

131 All baboons in the present experiment had recently participated in a 2x2 relational-
132 matching task (Fagot & Thompson 2011) that utilized the same geometric shapes as stimuli, and
133 reliably performed this task above chance.

134 Procedure

135 During initial training, all participants completed relational matching trials with uniform
136 same/different arrays each composed of four geometrical shapes. When converted to letters for
137 expository purposes, this task can be formalized as “match AAAA with BBBB, not CDEF.” The
138 baboons completed trials until they reached 80% or greater accuracy in two consecutive 100-trial
139 blocks. Correct choices resulted in the delivery of a wheat-grain reward; incorrect choices
140 resulted in no reward and the presentation of a green screen for 1 sec before the initiation of the
141 next trial. Baboons completed this basic training after $M = 400$ trials, $SD = 129.1$.

142 Human participants followed a parallel procedure with 2 slight modifications. Humans
143 completed trials until they reached 80% or greater accuracy in two consecutive 12-trial blocks.
144 Feedback was given following each trial with a display of “OUI” (yes) or “NON” (no). The 80%
145 criterion was reached in training after $M = 34.5$ trials, $SD = 16.3$.

146 In test sessions, mixed-array probe trials of three kinds were inserted randomly within a
147 trial block and rewarded nondifferentially: AAAB (entropy = 0.81), AABB (entropy = 1.0) and
148 AABC (entropy = 1.5), with the location of each item randomized across trials. Choice arrays on
149 both baseline and probe trials were comprised of *all same* (DDDD: entropy = 0) or *all different*
150 (EFGH: entropy = 2.0) stimuli. See Figure 1 for a depiction of trial types. Our rationale was that
151 an entropy-based strategy should be demonstrated by a greater frequency of *same* responses than
152 *different responses* to the 0.81 entropy arrays, because the degree of variability within those
153 arrays is much closer to *all same* (entropy = 0) than to *all different* (entropy = 2) arrays.
154 Similarly, no response bias should be observed in response to the arrays with an entropy of 1.0, if
155 the subject used an entropy-based strategy, because that value of entropy falls exactly in between
156 that of the *all same* (entropy = 0) and *all different* (entropy = 2) arrays. Probe trials were neither
157 determinately “correct” nor “incorrect” as their purpose was to discover how the participants
158 spontaneously matched mixed arrays that could be classified as either *same* or *different*,
159 dependent upon cognitive mechanism utilized (perceptual/conceptual), and how relations were
160 defined (continuous/categorical).

161 Each trial began with the presentation of a sample 4-item array (uniform baseline or
162 mixed probe). This sample remained centered in the upper third of the computer screen until
163 touched (see Figure 1, top left). After the participant touched the array, it was removed from the
164 screen and two 4-item choice arrays (all baseline-type, e.g. AAAA vs. BCDE) were presented in

165 the lower third of the screen at the left and right extremes (see Figure 1, top right). Arrays were
166 composed of simple white geometric shapes from a set of 10 items. By using a small stimulus
167 set, the opportunity for confounding matching strategies was high, providing more support for a
168 relational match if observed. Baseline trials were differentially rewarded in a manner identical to
169 training and probe trials were non-differentially rewarded as described above.

170 Eighty percent of randomly-selected probe trials were rewarded regardless of response
171 (correct or incorrect) to reflect levels of reward during baseline trials. Baboons completed 10
172 blocks of 124 trials (24 probe trials each block) resulting in approximately 240 total probe trials
173 for each subject. Human participants completed 2 blocks of 100 trials (60 probe trials each
174 block) resulting in 120 total probe trials of completely trial-unique configuration for each
175 subject, making rote memorization unlikely.

176 Results

177 As illustrated in Figure 2, the selection of choice arrays provides evidence of categorical
178 representation of relations by baboons, wherein only baseline identity samples (AAAA) were
179 reliably matched to *same* ($z = 46.89$, $\alpha = 0.001$). Regardless of entropy level (i.e., perceptual
180 variability), all other trial types were matched to *different*. As a group, the baboons responded
181 “different” significantly more often than chance on all probe-trial types [entropy = 0.81 (AAAB),
182 1.0 (AABB), 1.5 (AABC) and 2.0 (*baseline* ABCD)], z -values = 4.85, 8.99, 15.62 and 16.40
183 respectively, all $\alpha = 0.01$.

184 Human participants matched according to an identical pattern of responding, and the
185 correlation between the humans’ and baboons’ data was very close to 1, $r^2 = .997$, $p < 0.0001$.
186 Humans reliably matched baseline identity samples to *same* ($z = 14.39$, $\alpha = 0.001$). As was the
187 case for baboons, all other display types (including 2.0 baseline and mixed probe arrays from

188 entropy 0.81-1.5) were reliably matched to *different*. Human participants responded “different”
189 significantly more often than chance on all probe-trial types [entropy = 0.81 (AAAB), 1.0
190 (AABB), 1.5 (AABC) and 2.0 (*baseline* ABCD)], z -values = 3.43, 7.96, 11.58 and 13.91
191 respectively, all $\alpha = 0.01$, see Figure 2.

192 Whereas an effect of entropy within *different* classifications was observed across all trial
193 types for baboons, the effect was driven largely by significant differences between the *all same*
194 (entropy = 0) and all other types. Using logit transformed proportion of *different* responses, an
195 ANOVA revealed a significant effect of entropy value, $F(4,35) = 92.54$, $p < 0.01$. Tukey HSD
196 post-hoc tests (α level 0.01) revealed significant differences in responding between all entropy
197 levels, except between 0.81 and 1.0, and between entropy level 1.5 and 2.0. The exact same
198 pattern of results was obtained for human participants, as a main effect of entropy level was also
199 observed, $F(4,35) = 37.22$, $p < 0.01$. Tukey HSD post-hoc tests (α level 0.01) revealed significant
200 differences between all entropy levels, except between entropy levels within the different
201 category (i.e., 0.81 to 2.0). Further, no differences were observed between the entropy levels
202 within the different category. Critically, no reliable differences between percentage of *different*
203 selection for baboons and humans at any entropy level were observed: entropy = 0.0 (*baseline*
204 AAAA), 0.81 (AAAB), 1.0 (AABB), 1.5 (AABC) and 2.0 (*baseline* ABCD), z -values = 1.74,
205 0.14, 1.68, 0.69 and 1.94 respectively, $\alpha = 0.05$.

206 At entropy level 0.81 (e.g. AAAB, ABAA), wherein matches based on perceptual
207 variability would predict classification as *same*, we observe categorical *different* selection for
208 both humans and baboons. However, whereas at the group level all probe trials of this type were
209 matched to *different*, responding to configuration types with repeated identity (AAAB and
210 BAAA) was at levels of chance for both humans and baboons, z -values 1.47 and 1.22,

211 respectively, $\alpha = 0.05$, see Figure 3a. This pattern of responding suggests for the two species a
212 “fuzzy” boundary for *different* when presented with higher levels of repeated identity.

213 Because AABB trial types fall at the midpoint between *same* and *different*, responding at
214 this trial type is predicted to be random if driven by mechanisms of perceptual variability
215 comparison as is observed in pigeons (see Young & Wasserman 1997, Figure 4). Contrary to this
216 hypothesis, and in accordance with the above-reported findings at the 0.81 entropy level, we find
217 responding at the 1.0 entropy level to be categorically defined as *different*. Regardless of
218 configuration (AABB, ABAB and ABBA) all responding to different was significantly above
219 chance for *Papio*, z -values = 3.66, 5.69, 6.23 respectively, and *Homo*, z -values = 3.96, 5.10 and
220 4.46 respectively, $\alpha = 0.01$. See Figure 3b.

221 Whereas we observed a small increase in responding *same* to mixed arrays of entropy
222 0.81 (e.g., AAAB), matches to *different* (e.g., CDEF) were still significantly above chance at this
223 and all samples of greater variability. Even when a display contains mostly identical (e.g.,
224 AAAB) or an equal number of identical and nonidentical (e.g., AABB) items, both humans and
225 baboons reliably classify relations as *different*, implying a categorical abstraction and
226 representation of relations. Analyses of the different spatial arrangements of the shapes within
227 each level of entropy further stressed identical patterns of responding in humans and baboons.

228 Discussion

229 That both human and nonhuman primates follow a remarkably identical categorical
230 pattern of responding to *same* and *different* when matching relations provides unique support for
231 relational abstraction by nonhuman primates. Importantly, these results provide good evidence of
232 continuity in the evolution of the cognitive requisites for analogical reasoning in primates. This
233 would not have been the case had the monkeys’ response decisions been determined

234 predominantly by the perceptual strategy of matching the degree of stimulus variability
235 instantiated by the different levels of entropy.

236 Admittedly, both baboons and humans perceived and were secondarily sensitive to
237 changes in entropy. Interestingly, predominant effects of entropy as a basis for relational
238 matching have been observed in up to 20% of human participants in a similar task (Young &
239 Wasserman 2001), and have repeatedly been found in both monkeys (Fagot, Wasserman &
240 Young 2001; Flemming 2011; Flemming, Beran & Washburn 2007) and pigeons (for review, see
241 Wasserman & Young 2010). Importantly however, both monkey and human in the present task
242 were primarily predisposed to reinterpret relations in an abstract categorical manner.

243 The present observed effect of entropy within the *different* category for both humans and
244 baboons, suggests that *same* and *different* are “quantifiable” in that some mixed displays are
245 relationally *more same* or *more different* than others, as Smith et al. (2008) suggest.
246 Nevertheless, even the quantifiable nature of these relations does not preclude the predominance
247 of abstract categorical representation, as observed in the present experiment for both human and
248 baboon.

249 Because the explicit employment of concepts (rather than percepts) is essential to
250 analogy-making by even a strict definition (i.e., Penn et al. 2008), we provide here the first
251 conclusive demonstration that analogical relational matching is carried out by such means in
252 nonhuman animals other than apes (c.f., Gillian, Premack & Woodruff 1981; Oden, Thompson &
253 Premack 2001). More broadly, the present results implicate an abstract rule-based approach to
254 relational matching by monkeys suggestive of their capacity to re-encode and abstractly
255 represent relations categorically. This cognitive capacity further brings into question the extent

256 and limits of abstract thinking in the absence of language or symbolic codes and the nature of the
257 cognitive scaffolding effects they facilitate.

258 This adaptive capacity for abstract reasoning, which likely emerged prior to language,
259 may well have its evolutionary origins in the social domain wherein animals have to deal with
260 complex networks of relations between relationships (Dasser 1988). Given this evidence of
261 continuity between human and nonhuman animal in the evolution of the requisite cognitive
262 foundation for analogical reasoning, we can better entertain and investigate other contexts under
263 which nonhuman animals may or may not similarly represent their world abstractly

264

265

266

267

268

269

270

271

272

273

274 Author Note

275 Timothy M. Flemming supported by Fyssen Foundation. Joël Fagot supported by project ANR-
276 2010-BLANC-1908-01, and European Project EupriùNet-II. Roger Thompson supported by the
277 Franklin & Marshall College Faculty Research & Development Fund. Address email
278 correspondence to first author at: timothy.flemming@gmail.com

279

280

281

References

282 Clark A, Thornton C (1997) Trading spaces: Computation, representation, and the limits of
283 uniformed learning. *Behav Brain Sci* 20: 57-90.

284 Dasser V (1988) Mapping social concepts in monkeys. In Byrne RW, Whiten A, editors. (Eds.),
285 Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys,
286 apes, and humans. New York: Oxford University Press. pp 85-93.

287 Fagot J, Paleressompoule D (2009) Automated testing of cognitive performance in baboons
288 maintained in social groups. *Behav Res Meth* 41: 396-404.

289 Fagot J, Bonté E (2010) Automated testing of cognitive performance in monkeys: Use of a
290 battery of computerized test systems by a troop of semi-free-ranging baboons (*Papio*
291 *papio*). *Behav Res Meth* 42: 507-516.

292 Fagot J, Thompson RKR (2011) Generalized relational matching by Guinea baboons (*Papio*
293 *papio*) in two by two-item analogy problems. *Psychol Sci* 22: 1304-1309.

294 Fagot J, Wasserman EA, Young ME (2001) Discriminating the relation between relations: The
295 role of entropy in abstract conceptualization by baboons (*Papio papio*) and humans
296 (*Homo sapiens*). *J Exp Psychol: Anim Behav Process* 27: 316-328.

297 Flemming TM (2011) Conceptual thresholds for *same* and *different* in old- (*Macaca mulatta*)
298 and new-world (*Cebus apella*) monkeys. *Behav Process* 86: 316-322.

299 Flemming TM, Beran MJ, Thompson RKR, Kleider HM, Washburn DA (2008) What meaning
300 means for same and different: Analogical reasoning in humans (*Homo sapiens*),

301 chimpanzees (*Pan troglodytes*), and rhesus monkeys (*Macaca mulatta*). *J Comp Psychol*
302 122: 176-185.

303 Flemming TM, Beran MJ, Washburn DA (2007) Disconnect in concept learning by rhesus
304 monkeys: Judgment of relations and relations-between-relations. *J Exp Psychol: Anim*
305 *Behav Process* 33: 55-63.

306 Flemming TM, Thompson RKR, Beran MJ, Washburn DA (2011). Analogical reasoning and the
307 differential outcome effect: Transitory bridging of the conceptual gap for rhesus monkeys
308 (*Macaca mulatta*). *J Exp Psychol: Anim Behav Process* 37: 353-360.

309 Gentner D (1999) Analogy. In Wilson RA, Keil F, editors. *The MIT encyclopedia of the*
310 *cognitive sciences*. Cambridge, MA: MIT Press. pp. 17-20.

311 Gentner D (1983) Structure-mapping: A theoretical framework for analogy. *Cogn Sci* 7: 155-
312 170.

313 Gillian DJ, Premack D, Woodruff G (1981) Reasoning in the chimpanzee: I. Analogical
314 reasoning. *J Exp Psychol: Anim Behav Process* 7: 1-17.

315 Hofstadter DR (2001) Analogy as the core of cognition. In Gentner D, Holyoak KJ, Kokinov
316 BN, editors. *The analogical mind: Perspectives from cognitive science*. Cambridge, MA:
317 The MIT Press. pp. 499-538.

318 Oden DL, Thompson RKR, Premack D (2001) Can an ape reason analogically? Comprehension
319 and production of analogical problems by Sarah, a Chimpanzee (*Pan troglodytes*). In
320 Gentner D, Holyoak KJ, Kokinov BN, editors. *The analogical mind: Perspectives from*
321 *cognitive science*. Cambridge, MA: The MIT Press. pp. 471-497.

322 Penn DC, Holyoak KJ, Povinelli DJ (2008) Darwin's mistake: Explaining the discontinuity
323 between human and nonhuman animal minds. *Behav Brain Sci* 31: 109-130.

324 Premack D (1986) Minds with and without language. In Weiskrantz L, editor. Thought without
325 language. New York: Oxford University Press. pp. 46-65.

326 Rattermann MJ, Gentner D (1998) More evidence for a relational shift in the development of
327 analogy: Children's performance on a causal mapping task. *Cogn Dev* 13: 453-478.

328 Smith JD, Redford JS, Haas SM, Coutinho MVC, Couchman JJ (2008) The comparative
329 psychology of same-different judgments by humans (*Homo sapiens*) and monkeys
330 (*Macaca mulatta*). *J Exp Psychol: Anim Behav Process* 34: 361-374.

331 Thompson RKR, Oden DL (2000) Categorical perception and conceptual judgments by
332 nonhuman primates: The paleological monkey and the analogical ape. *Cogn Sci* 24: 363-
333 396.

334 Thompson RKR, Oden DL, Boysen ST (1997) Language-naïve chimpanzees (*Pan troglodytes*)
335 judge relations between relations in a conceptual matching-to-sample task. *J Exp
336 Psychol: Anim Behav Process* 23: 31-43.

337 Wasserman EA, Young ME (2010) Same-different discrimination: The keel and
338 backbone of thought and reasoning. *J Exp Psychol: Anim Behav Process* 36: 3-22.

339 Young ME, Wasserman EA (1997) Entropy detection by pigeons: Response to mixed visual
340 displays after same-different discrimination training. *J Exp Psychol: Anim Behav
341 Process* 23: 157-170.

342 Young ME, Wasserman EA (2001) Entropy and variability discrimination. *J Exp Psychol: Learn
343 Mem Cogn* 27: 278-293.

344 Zentall TR, Wasserman EA, Lazareva OF, Thompson RKR, Rattermann MJ (2008) Concept
345 learning in animals. *Comp Cogn Behav Rev* 3: 13-45.

346

347

348

349 Figures

350

351 Figure 1. Depiction of baseline and probe trial types in 4-item relational matching-to-sample task
352 completed by *Homo sapiens* and *Papio papio*. Each sample configuration was presented first on
353 a black background centered on the computer screen (top left) and disappeared upon touch
354 allowing for the subsequent presentation of two choice arrays (top right). Exemplary sample
355 arrays at each level of entropy level (0 to 2.0) are depicted along bottom.

356

357 Figure 2. Proportion of *different* responses for humans and baboons for all trials types (baseline
358 and probe) combined. Error bars indicate standard error (SE); dashed horizontal line represents
359 chance performance. All matches to *different* at entropy levels 0.81 to 2.0 are significantly above
360 chance levels of responding.

361

362 Figure 3. Percent *different* matches for various configuration types at entropy levels 0.81 and 1.0
363 for baboons and humans. At entropy = 0.81 (a), *lead/end* refers to to configuration types wherein
364 the unique stimulus either lead or ended the array (BAAA and AAAB). *Imbedded* configuration
365 types were those wherein the unique object was in a middle position (ABAA or AABA). Dashed
366 horizontal line represents chance selection.

367